Vieta's Formulas

Howard Halim

November 27, 2017

Introduction

Vieta's formulas are several formulas that relate the coefficients of a polynomial to its roots. For a quadratic $a x^{2}+b x+c$ with roots r_{1} and r_{2}, Vieta's formulas state that

$$
r_{1}+r_{2}=-\frac{b}{a}, \quad r_{1} r_{2}=\frac{c}{a} .
$$

This can be shown by noting that $a x^{2}+b x+c=a\left(x-r_{1}\right)\left(x-r_{2}\right)$, expanding the right hand side, then comparing coefficients. For a cubic polynomial $a x^{3}+b x^{2}+c x+d$ with roots r_{1}, r_{2}, and r_{3}, we have

$$
r_{1}+r_{2}+r_{3}=-\frac{b}{a}, \quad r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}=\frac{c}{a}, \quad r_{1} r_{2} r_{3}=-\frac{d}{a} .
$$

Finally, Vieta's formulas can be generalized to any polynomial. Given an nth degree polynomial $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ with roots $r_{1}, r_{2}, \ldots, r_{n}$, Vieta's formulas state that

$$
\left\{\begin{array}{l}
r_{1}+r_{2}+r_{3}+\cdots+r_{n}=-\frac{a_{n-1}}{a_{n}} \\
\left(r_{1} r_{2}+r_{1} r_{3}+\cdots+r_{1} r_{n}\right)+\left(r_{2} r_{3}+r_{2} r_{4}+\cdots+r_{2} r_{n}\right)+\cdots+r_{n-1} r_{n}=\frac{a_{n-2}}{a_{n}} \\
\vdots \\
r_{1} r_{2} r_{3} \cdots r_{n}=(-1)^{n} \frac{a_{0}}{a_{n}}
\end{array}\right.
$$

Note that the sign alternates between positive and negative. Also, the n roots don't have to be real - the formulas hold for complex roots too.

Examples

1. Integers x and y satisfy $x y+x+y=71$ and $x^{2} y+x y^{2}=880$. Find x and y.
2. Let n be a positive integer, and for $1 \leq k \leq n$, let s_{k} be the sum of the $\binom{n}{k}$ products of the numbers $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$ taken k at a time. For example,

$$
s_{1}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \quad \text { and } \quad s_{2}=1 \cdot \frac{1}{2}+1 \cdot \frac{1}{3}+\cdots \frac{1}{n-1} \cdot \frac{1}{n}
$$

Find $s_{1}+s_{2}+s_{3}+\cdots+s_{n}$.

Problems

1. Find all triples of complex numbers satisfying

$$
\left\{\begin{array}{l}
a+b+c=0 \\
a b+b c+c a=0 \\
a b c=0
\end{array}\right.
$$

2. (AIME I 2005) The equation $2^{333 x-2}+2^{111 x+2}=2^{222 x+1}+1$ has three real roots. Find their sum.
3. (AIME I 2001) Find the sum of all the roots, real and non-real, of the equation $x^{2001}+$ $\left(\frac{1}{2}-x\right)^{2001}=0$, given that there are no multiple roots.
4. Let a, b, and c be real numbers such that $a+b+c>0, a b+b c+c a>0$, and $a b c>0$. Prove that a, b, and c are all positive.
5. (CMO 1996) If α, β, γ are the roots of $x^{3}-x-1=0$, compute $\frac{1+\alpha}{1-\alpha}+\frac{1+\beta}{1-\beta}+\frac{1+\gamma}{1-\gamma}$.
6. (HMMT November 2016 Guts Round) Let $r_{1}, r_{2}, r_{3}, r_{4}$ be the four roots of polynomial $x^{4}-4 x^{3}+8 x^{2}-7 x+3$. Find the value of

$$
\frac{r_{1}^{2}}{r_{2}^{2}+r_{3}^{2}+r_{4}^{2}}+\frac{r_{2}^{2}}{r_{1}^{2}+r_{3}^{2}+r_{4}^{2}}+\frac{r_{3}^{2}}{r_{1}^{2}+r_{2}^{2}+r_{4}^{2}}+\frac{r_{4}^{2}}{r_{1}^{2}+r_{2}^{2}+r_{3}^{2}}
$$

7. Let r, s, and t be the three roots of the equation

$$
8 x^{3}+1001 x+2008=0
$$

Find $(r+s)^{3}+(s+t)^{3}+(t+r)^{3}$.
8. Let z_{1}, z_{2}, and z_{3} be three complex numbers such that $z_{1}+z_{2}+z_{3}=\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}$ and $z_{1} z_{2} z_{3}=1$. Show that at least one of the z_{i} 's must be 1 .

