Inversion Problems

- 1. (USAMO 1993 P2) Let *ABCD* be a convex quadrilateral such that diagonals *AC* and *BD* intersect at right angles, and let *E* be their intersection. Prove that the reflections of *E* across *AB*, *BC*, *CD*, *DA* are concyclic.
- 2. Let $\omega_1, \omega_2, \omega_3, \omega_4$ be circles such that ω_i and ω_{i+1} are externally tangent at a point A_i for all $i = \{1, 2, 3, 4\}$ (indices taken mod 4). Prove that A_1, A_2, A_3, A_4 are concyclic.
- 3. (Brazil 2009 P5) Let ABC be a triangle and O its circumcenter. Lines AB and AC meet the circumcircle of OBC again in $B_1 \neq B$ and $C_1 \neq C$, respectively, lines BA and BC meet the circumcircle of OAC again in $A_2 \neq A$ and $C_2 \neq C$, respectively, and lines CA and CB meet the circumcircle of CAB in CA and CA are a common point.
- 4. (BAMO 2008 P4) A point D lies inside triangle ABC. Let A_1, B_1, C_1 be the second intersection points of the lines AD, BD, and CD with the circumcircles of BDC, CDA, and ADB, respectively. Prove that

$$\frac{AD}{AA_1} + \frac{BD}{BA_1} + \frac{CD}{CC_1} = 1.$$

- 5. (NIMO Winter 2014 P7) Let ABC be a triangle and let Q be a point such that $\overline{AB} \perp \overline{QB}$ and $\overline{AC} \perp \overline{QC}$. A circle with center I is inscribed in $\triangle ABC$, and is tangent to \overline{BC} , \overline{CA} and \overline{AB} at points D, E, and F, respectively. If ray QI intersects \overline{EF} at P, prove that $\overline{DP} \perp \overline{EF}$.
- 6. (Inversion Distance Formula) Let *A*, *B*, and *O* be 3 distinct points. An inversion centered at *O* with radius *r* sends *A* to *A'* and *B* to *B'*. Prove that

$$A'B' = \frac{r^2}{AO \cdot BO} \cdot AB.$$

7. (Ptolemy's Inequality) Let *A*, *B*, *C*, *D* be point on the plane, no 3 collinear. Prove that

$$AB \cdot CD + BC \cdot DA \ge AC \cdot BD$$

with equality iff *A*, *B*, *C*, *D* are concyclic.

8. (USAMO 2009 P5) Trapezoid ABCD, with $\overline{AB} \parallel \overline{CD}$, is inscribed in circle ω and point G lies inside triangle BCD. Rays AG and BG meet ω again at points P and Q, respectively. Let the line through G parallel to \overline{AB} intersects \overline{BD} and \overline{BC} at points R and S, respectively. Prove that quadrilateral PQRS is cyclic if and only if \overline{BG} bisects $\angle CBD$.

- 9. (ELMO 2018 P3) Let A be a point in the plane, and ℓ a line not passing through A. Evan does not have a straightedge, but instead has a special compass which has the ability to draw a circle through three distinct noncollinear points. (The center of the circle is [i]not[/i] marked in this process.) Additionally, Evan can mark the intersections between two objects drawn, and can mark an arbitrary point on a given object or on the plane.
 - (i) Can Evan construct the reflection of A over ℓ ?
 - (ii) Can Evan construct the foot of the altitude from A to ℓ ?
- 10. (EGMO 2013 P5) Let Ω be the circumcircle of the triangle ABC. The circle ω is tangent to the sides AC and BC, and it is internally tangent to the circle Ω at the point P. A line parallel to AB intersecting the interior of triangle ABC is tangent to ω at Q.

Prove that $\angle ACP = \angle QCB$.

- 11. (USAMO 2019 P2) Let ABCD be a cyclic quadrilateral satisfying $AD^2 + BC^2 = AB^2$. The diagonals of ABCD intersect at E. Let P be a point on side \overline{AB} satisfying $\angle APD = \angle BPC$. Show that line PE bisects \overline{CD} .
- 12. (Israel 1995) Let PQ be the diameter of semicircle H. Circle O is internally tangent to H and tangent to PQ at C. Let A be a point on H and B a point on PQ such that $AB \perp PQ$ and is tangent to O. Prove that AC bisects $\angle PAB$.
- 13. (IMO 2015 P3) Let *ABC* be an acute triangle with *AB* > *AC*. Let Γ be its circumcircle, *H* its orthocenter, and *F* the foot of the altitude from *A*. Let *M* be the midpoint of *BC*. Let *Q* be the point on Γ such that $\angle HQA = 90^\circ$ and let *K* be the point on Γ such that $\angle HKQ = 90^\circ$. Assume that the points *A*, *B*, *C*, *K* and *Q* are all different and lie on Γ in this order.
 - Prove that the circumcircles of triangles *KQH* and *FKM* are tangent to each other.
- 14. (RMM 2018 P6) Fix a circle Γ , a line ℓ to tangent Γ , and another circle Ω disjoint from ℓ such that Γ and Ω lie on opposite sides of ℓ . The tangents to Γ from a variable point X on Ω meet ℓ at Y and Z. Prove that, as X varies over Ω , the circumcircle of XYZ is tangent to two fixed circles.